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In this paper we have explored a model for self-induced aggregation of Brownian particles incorporating
non-Markovian and non-Gaussian character of the associated random noise processes. The time evolution of
each individual is guided by an overdamped Langevin equation of motion with a nonlocal drift arising out of
the imbalance in the local distribution of the other individuals. Our simulation results show that colored noise
enhances the tendency of cluster formation. Another observation is that the critical noise variance decreases at
first with increase in noise correlation time followed by an increase after exhibiting a minimum. Furthermore,
in the long time limit the cluster number in the aggregation process exhibits depletion with time following a
power law with an exponent which increases remarkably with non-Markovian character of the noise processes.
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I. INTRODUCTION

Formation of large spatial structures and clusters by the
aggregation of small species joining each other constitutes a
broad area of research in pure and applied sciences �1–4�.
General properties of aggregation dynamics include micro-
physics of clouds and precipitation �1�, the principle of poly-
mer formation �2�, different types of ecological problems �4�,
etc., to mention a few. An important aspect of the theory of
aggregation dynamics concerns the realm of biological sys-
tems in which cooperative activity among individuals usually
involves social behavior �4,5�. Although its underlying
mechanism, in general, remains unknown, a number of at-
tempts have been made to establish a rigorous and quantita-
tive basis of the emergence of cooperation �CP� among indi-
viduals �6–18�. For example, considering a one-dimensional
�1D� model of clustering the effect of environment on the
cooperation mechanism has been investigated in Refs.
�19–21�. Here the authors have considered white noise as the
random perturbation of the environment. The random fluc-
tuations in the social communities, on the other hand, are, in
general, nonthermal in origin. They may appear as a result of
complicated inherent dynamics and therefore the noise of
nonthermal origin may be non-Gaussian and correlated in
characteristics. The correlated noise has played an important
role in the context of CP which is related to aggregation
dynamics since correlation �CR� among the particles in-
creases with increase of noise correlation time �CT�. Keeping
this in mind we have extended the study of the aggregation
dynamics in a self-induced 1D model �21� to non-Markovian
and non-Gaussian regimes. Our aim is to explore how the
dynamics of aggregation to form clusters depends on non-
Markovian and non-Gaussian properties of the noise pro-
cesses. The study is motivated by the recent experimental
and theoretical observation on neural network and sensory
systems �22,23� which offer strong indication that the noise

sources in these systems could be non-Gaussian. The noise
of biological origin in many cases is of nonlinear dynamical
origin which is correlated and non-Gaussian in character,
specifically, in the context of evolution �22,24�. The role of
colored non-Gaussian noise in the barrier crossing dynamics,
the stochastic resonance, and complex networks has also
been explored by several authors �25�.

II. THE MODEL

Consider a system consisting of N individuals which
change their state xi according to a majority rule. xi denotes
the reputation score of the ith member or the position in a
possible chemotaxis description or some other amplitude
characterizing the role of an individual within the framework
of population biology. We assume that each individual
changes xi by the following stochastic equation of motion:

ẋi = v�xi� + �i�t� . �1�

Here v denotes the drift, which is given by the following
expression:

v�xi� = �
w+�xi,t� − w−�xi,t�
w+�xi,t� + w−�xi,t�

, �2�

where w� are defined by

w��xi� = �
j

����xj − xi��exp�− ��xj − xi�� . �3�

� in the above equation is the unitary step function. Equa-
tions �1� and �2� reveal that the velocity at which an indi-
vidual decides to move to the left or to the right depends on
the difference w+−w−. The magnitude of w� depends on the
exponential weight with a coefficient �=1 /r0; r0 specifies
the range up to which one individual still perceives the pres-
ence and the influence of the other member of the group. So
according to the above description aggregation results from
preferable migration of individuals depending on the sign of
v. The term w++w− in the denominator of Eq. �2� presents
the normalization factor and so the velocity is bounded
within a range �−� ,��.
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We assume that �i�t� in Eq. �1� is a colored noise which
may be of Gaussian or non-Gaussian type depending on the
situation. �i and � j are uncorrelated ���i�t�� j�t��=0, for i
� j�. The non-Gaussian noise can be generated from the so-
lution of the following Langevin equation �26�:

�̇i = −
1

�

d

d�
Vp��i� +

	D

�
�i�t� , �4�

where �i�t� being a standard Gaussian noise of zero mean
and its two-time correlation is given by

��i�t��i�t��� = 2	�t − t�� �5�

and

Vp��i� =
D

��p − 1�
ln�1 + ��1�p − 1��i

2/2�� . �6�

Here the form for noise �i allows us to control the departure
from the Gaussian behavior easily by changing a single pa-
rameter p. D and � are noise parameters related to the noise
intensity and the correlation time of �i, respectively. The
parameter �1 in Eq. �6� is defined as

�1 =
�

D
. �7�

Now we consider two different situations. For p=1, Eq. �4�
becomes

�̇i = −
�i

�
+

	D

�
�i�t� , �8�

i.e., the time evolution equation of the Ornstein-Uhlenbeck
noise process �28� for which the correlation function
��i�t��i�0�� decays exponentially

��i�t��i�0�� =
D

�
exp
−

t

�
� . �9�

Thus � is the correlation time of the Ornstein-Uhlenbeck
noise. In the next step we consider the case where p
1. For
this case the stationary properties of the noise �i, including
the time correlation function, have been studied in Ref. �27�
and here we summarize the main results. The stationary
probability distribution is given by

P��i� =
1

Zp
�1 + �1�p − 1�

�i
2

2

−1/�p−1�

, �10�

where Zp is the normalization factor and is given by

Zp = �
−�

�

d�i�1 + �1�p − 1�
�i

2

2

−1/�p−1�

=	 �

�1�p − 1�

�1/�p − 1� − 1/2�


�1/�p − 1��
. �11�


 in the above equation signifies the Gamma function. This
distribution can be normalized only for p�3. Since the
above distribution function is an even function of �i, the first
moment, ��i�, is always equal to zero, and the second mo-
ment is given by

��i
2�p�� =

2D

��5 − 3p�
, �12�

which is finite only for p�5 /3. Furthermore, for p�1, the
distribution has a cutoff and it is only defined for

��i� � �ic �	 2D

��1 − p�
. �13�

Finally, the correlation time of non-Gaussian noise � of the
stationary regime of the process �i�t� diverges near p=5 /3
and it can be approximated over the whole range of values of
p as

�p � 2�/�5 − 3p� . �14�

Clearly, when p→1, we recover the limit of a Gaussian col-
ored noise, the Ornstein-Uhlenbeck process, since in this
limit the term in the square brackets of Eq. �10� can be writ-
ten as

1 + �1�p − 1�
�i

2

2
= exp
�1�p − 1�

�i
2

2
� �15�

and, therefore, Eq. �9� becomes

P��i� =
1

Z1
exp�− �1�i

2/2� , �16�

with

Z1 = 	�/�1. �17�

Equation �12� shows that for a given external noise strength
D and noise correlation time � the variance of the non-
Gaussian noise is higher than that of the Gaussian noise for
p
1, i.e.,

��i
2�p�� 
 ��i

2�1�� . �18�

Similarly Eq. �14� implies that �p
� for p
1.

III. RESULTS AND DISCUSSION

Based on the above-mentioned model we have investi-
gated the aggregation dynamics numerically. To follow the
dynamics of each individual present in the system N coupled
stochastic equations �Eq. �1�� are solved along with the equa-
tion for noise process �4� simultaneously using the standard
Heun’s algorithm. We thus proceed as follows. In the first
step the calculated quantities are

ki = h�v�xi�t�� + �i�t�� , �19�

li = hVp��i�t�� , �20�

and

mi = 	hD/�2�i�t� . �21�

h is the integration step length. In the above equation we
incorporate the magnitude of �i�t� using the well-known
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Box-Muller-Wiener method �30–33�. However, using the
above quantities we update xi and �i as

yi = xi�t� + ki �22�

and

zi = �i�t� + li + mi. �23�

From the above equations the position of the ith particle and
random perturbation on it ��i� at time t+h can be determined
from the given values of xi and �i at time t as

xi�t + h� = xi�t� +
h

2
�v�xi�t�� + v�yi� + �i�t� + zi� �24�

and

�i�t + h� = �i�t� +
h

2
�Vp��i�t�� + Vp�zi�� + mi. �25�

Thus Heun’s method is a stochastic Runge-Kutta-type
method and it reduces to the second order Runge-Kutta
method in the absence of noise �34�. In this numerical
scheme we have considered the sum in Eq. �3� over the
whole population. A very small time step �h� of 0.01 for
numerical integration has been used. For the initial coordi-
nates we have assumed that at t=0 all the particles are uni-
formly distributed in a one-dimensional box of fixed size L.
The number of particles per unit length is called particle
density and it is represented by �. The boundary condition
used in the present calculation is the same as in Ref. �21�. If

a particle close to the boundaries escapes the box, it is rein-
jected on the other side. The authors of Ref. �21� checked
that it gives the same result as with the periodic boundary
condition.

To have an idea about the role of noise strength, noise
correlation time, and other noise parameters on the cluster
formation dynamics we plot the position of all the particles
vs time, t, in Fig. 1. It shows that the cluster formation ten-
dency as well as size of the cluster increases as the noise
strength is raised up to a critical value �Figs. 1�a� and 1�b��.
To check whether the cluster number �CN� converges toward
a stationary value we have specially plotted in Fig. 1�b� the
trajectory for a very long time. It implies that CN really
converges toward a stationary limit. However, beyond a criti-
cal value of the noise strength all the individual particles
exhibit the normal Brownian motion �Fig. 1�c� exhibits al-
most homogeneous distribution of particles over the space�.
However, an increase in the noise correlation time for a fixed
noise strength corresponding to the homogeneous distribu-
tion of particles as in Fig. 1�c� results in cluster formation.
This is shown in Fig. 1�d�. Thus colored noise can induce the
cluster formation. Furthermore, a generic clustered configu-
ration in Fig. 1�d� obtained from colored Gaussian noise be-
comes disordered as shown in Fig. 1�c� when one switches
from Gaussian to non-Gaussian nature of noise. This is remi-
niscent of a phase transition from the clustered state to a
homogeneous state. The cluster formation induced by col-
ored noise also can be demonstrated by calculating the struc-
ture factor �S�q , t��. It is defined as
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FIG. 1. This figure refers to the system dynamics with 100 particles starting from uniformly distributed initial conditions in the spatial
range �−50, +50�. The parameter set for subfigures �a� p=1, �=0.01, D=0.01, �b� p=1, �=0.01, D=0.1, �c� p=1, �=0.01, D=3.0, �d� p
=1, �=10.0, D=3.0. �=1 and �=1 for all the subfigures.
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S�q,t� =
1

N
��

k=1

N

exp�iqxk�t��� , �26�

where q is the wave vector. Here q→0 is a trivial limit for
xk�0. However, S�q , t� measures the degree of cluster for-
mation on determining the phase relation among the par-
ticles. If there is one cluster then all the particles are in the
same phase and then the above sum reduces to N exp�iqxk�.
Thus for a single cluster the structure factor is one and it is
zero for the homogeneous distribution of particles around the
origin. In Fig. 2 we have plotted S�q , t� as a function of q at
different times corresponding to the parameter sets of Figs.
1�c� and 1�d�. It further confirms that noise correlation can
induce the cluster formation �see the inset of Fig. 2�. The
structure factor is slowly decaying function of q with a qua-
sioscillating behavior because of accumulation of more than
one cluster at different positions for each time. Since before
the stationary state both the locations and the number of
clusters are different at different times, there is no scaling
form between the structure factors calculated at different
times.

We now return to rationalize the facts observed in Fig. 1.
The cluster formation is a result of cooperation among the
particles. The CP mechanism is effected by the dual role of
noise: pushing particles toward the influence zone of a larger
cluster, but also taking particles away from clusters. If the
diffusion is weak then the first role dominates over the other
and the noise assists to form a bigger cluster. However, if the
noise strength is very high, the diffusion dominates over the
cooperative effect and we observe the phase where particles
are distributed almost uniformly over the space instead of
cluster formation. Next we come to the point of how noise
correlation time can induce cluster formation. With increase
of noise correlation time the variance of noise decreases and
consequently the diffusion of the particles is suppressed due
to the non-Markovian nature of the noise. In addition, the

noise correlation time strongly affects the drift term in the
dynamics �28,29�. The drift term in the present problem ac-
counts for the extent of cooperation among the particles
which leads to cluster formation. Thus it is apparent that the
colored noise-induced nucleation is a result of the extension
of the cooperation and the correlation among the particles as
well as suppression of the diffusive nature of the particles
with increase of noise correlation time. Finally, we trace the
origin of how the cluster formation is suppressed by the non-
Gaussian noise. For a given noise strength the variance of the
non-Gaussian noise is much higher compared to the Gauss-
ian noise �see Eq. �18��. As a result the diffusion may domi-
nate over the cooperative effect for non-Gaussian noise and
there is no cluster formation. On the other hand, for the same
noise strength the cluster formation is possible for Gaussian
noise due to weak diffusion compared to non-Gaussian
noise. This points toward a phase-transition-like phenom-
enon as one switches from non-Gaussian to Gaussian noise
or vice versa. It may be noted here that the results are inde-
pendent of the initial condition except for the case of uni-
form distribution over the 1D box in the absence of noise,
since the cooperation among the particles only depends on
their distance �Eq. �3��. Another point to be mentioned is that
one individual perceives the presence and the influence of
the other member of the group over a finite distance and
therefore at long time almost a finite number of nucleation
centers as well as clusters are observed. We may call this
state a “quasistationary” �QS� state. The notation Nc�ts� is
used to imply the cluster number at quasistationary state. ts
corresponds to the time after which the system reaches to the
QS state. Using the quantity Nc�ts� we have defined an order-
parameter-like quantity

� =
Nc�ts�

Nc�t = 0�
, �27�

where Nc�t=0� is the initial cluster number. We define a clus-
ter as a set of particles with mutual distance �xi−xj� below a
given cutoff � which one may call resolution. However, at
low noise strength, �→0 and it becomes close to unity when
noise strength is very high. To check whether the transition
�from the clustered state to the homogeneous state� is con-
tinuous or not we have plotted � vs noise strength for dif-
ferent box lengths in Fig. 3 for ts=1000. It shows that for a
larger box the transition is smooth and continuous. Noise-
assisted clustering is manifested in Fig. 3 through the initial
decrease of � with increase in noise strength for large box
length. The value of the order parameter in Fig. 3 at low
noise strength is close to zero. It implies that the chosen
quasistationary time for Fig. 3 is reasonably good with re-
spect to the very slow rate of decrease of the cluster number
at long time. To check it we have calculated � for box length
L=1000 at ts=1200 and compared its value with that of ts
=1000. This analysis is presented in the inset of Fig. 3. It
shows that there is a very little decrease in �, particularly at
low noise strength and the critical value of the noise strength
around which the continuous transition takes place remains
unchanged. At the same time, the inset implies that the ro-
bustness of Fig. 3 is satisfactory with respect to the change
of the ts and this figure would remain almost the same over a
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FIG. 2. Plot of the structure factor S vs wave vector q at differ-
ent times for the parameter set �=1, �=1, �=1, �=0.01, D=3.0,
and p=1. In the inset, same plot but �=10.0.
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long time. However, from Fig. 3 one may determine the criti-
cal noise variance ���p

2�c=
2Dc

��5−3p� � at which the continuous
transition occurs. Dc is the value of threshold noise strength
around which the sharp change of the order parameter �
takes place and it is estimated numerically from the plot of
the order parameter vs D for a given noise correlation time �.
To determine the value of Dc we have chosen the quasista-
tionary time such that it is almost invariant on further in-
crease of ts. We have checked that ts=1000 is a good limit
for Fig. 4, where we have presented how ��p

2�c depends on
the noise correlation time. The initial fall of the critical vari-
ance is due to slow increase of Dc with �. As � becomes large
the correlation as well as the cooperation among the particles
grows and that leads to an increase in Dc at a faster rate. As
a result the critical variance first decreases followed by an
increase exhibiting a minimum. The appearance of a mini-
mum at low � for non-Gaussian noise is a consequence of
Eq. �14�. Because of higher effective noise correlation time
for the non-Gaussian noise compared to the Gaussian noise,

CR and CP become important in the dynamics at low � for
the former �compared to the corresponding latter case�.

In the next step we have investigated the variation of clus-
ter number Nc�ts� at the quasistationary state with noise cor-
relation time ��� and the results are plotted in Fig. 5. It ex-
hibits the cluster number rapidly falling with � for the
Gaussian noise when compared to the corresponding case for
the non-Gaussian noise. As the correlation and the coopera-
tion among the particles increases with increasing � the big-
ger cluster is formed for larger noise correlation time. Be-
cause of that the cluster number reduces for both Gaussian
and non-Gaussian noises as � grows. The slow decrease of
cluster number for non-Gaussian noise �compared to the case
for Gaussian noise� is due to higher noise variance �after a
certain value of noise variance it is difficult to form a clus-
ter�.

The above discussions raise an important question: how
does the aggregation kinetics depend on the noise correlation
time? To this end we have explored the aggregation pro-
cesses through a set of simulation studying on a system in-
volving 104 particles. We choose the initial conditions corre-
sponding to the clustered phase in the phase diagram
presented in Fig. 4. Our observation is that �Fig. 6� both in
the Markovian and the non-Markovian limits the cluster
number rapidly decreases with time at the short time regime
and beyond that it slowly varies. For a detailed analysis of
the influence of the noise correlation and non-Gaussian pa-
rameter on the rate of aggregation processes we set an ap-
proximate power law of the following form:

Nc�t� � t−z. �28�

This type of algebraic decay law is valid for all � and p
values provided t is long enough �see the inset of Fig. 6�.
From Fig. 6 it is surprising to note that the exponent z in the
power law increases more than fifty percent compared to the
Markovian case for �=1.0. We are thus led to believe that the
noise correlation time enhances the cooperative effect in the
aggregation dynamics through modification of the drift term
as well as by reducing the noise variance for the large noise
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FIG. 3. Plot of the ratio of number of clusters at quasistationary
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�=1, �=1, �=0.1, �=1, ts=1000, and p=1. The inset figure pre-
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strength. We mention, in passing, that the exponent z is a
little bit smaller for the colored non-Gaussian noise com-
pared to the Gaussian case as a result of higher noise vari-
ance for the former for a given noise strength.

IV. CONCLUSION

Based on the numerical simulation of stochastic dynamics
associated with colored non-Gaussian noise we have inves-
tigated a model for self-induced aggregation kinetics. Such a
type of self-induced model is used to deal with a certain class
of problems in social biological problems. In this model,
each individual is represented by a Brownian particle, where
drift velocity depends on the population imbalance perceived
by a single individual. Based on a set of numerical simula-
tion studies we have examined the effect of the noise corre-
lation and non-Gaussian character of the noise in the self-
induced aggregation dynamics. Our main observation
includes the following points.

�i� The aggregation of particles is facilitated by increase
of noise correlation time �Figs. 1 and 2�. The aggregation

may disappear if one switches from Gaussian to non-
Gaussian noise for a given noise strength and correlation
time.

�ii� The change of state from homogeneous distribution of
particles to the clustered state is continuous.

�iii� The critical noise variance first decreases with an
increase of noise correlation time followed by an increase
and a minimum. The minimum appears at low noise correla-
tion time for non-Gaussian noise compared to the case for
Gaussian noise.

�iv� The cluster number at quasisteady state decreases
with increase of noise correlation time.

�v� The cluster formation kinetics follows a power law for
the variation of cluster number with time given by Nc�t�
� t−z at long time. The exponent z remarkably increases for
the non-Markovian case.
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